Hydrogel-Tissue Chemistry: Principles and Applications
Posted on May 20, 2018
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons—even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants—or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout—is stimulating innovation across biology and medicine.
By Viviana Gradinaru1, Jennifer Treweek, Kristin Overton, and Karl Deisseroth