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Abstract

Over the past five years, a rapidly developing experimental approach has enabled high-resolution 

and high-content information retrieval from intact multicellular animal (metazoan) systems. New 

chemical and physical forms are created in the hydrogel-tissue chemistry process, and the 

retention and retrieval of crucial phenotypic information regarding constituent cells and molecules 

(and their joint interrelationships) are thereby enabled. For example, rich data sets defining both 

single-cell-resolution gene expression and single-cell-resolution activity during behavior can now 

be collected while still preserving information on three-dimensional positioning and/or brain-wide 

wiring of those very same neurons—even within vertebrate brains. This new approach and its 

variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and 

chemical representations of sensation, cognition, and action. More generally, reimagining 

metazoans as metareactants—or positionally defined three-dimensional graphs of constituent 

chemicals made available for ongoing functionalization, transformation, and readout—is 

stimulating innovation across biology and medicine.
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INTRODUCTION

In the study of complex biological systems, a powerful experimental approach is that of 

analysis or disassembly (removing components, such as a particular type of cell or complex 
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of molecules, from the native context for further study). For example, the current revolution 

in cancer treatment was in part enabled by reductionist molecular and cellular-level analysis 

of isolated cancer cells and of specific immune-system cells that play a role in suppressing 

tumor growth. The success of this analytical paradigm has, in part, extended to neuroscience 

as well; studies of isolated neurons and axons have facilitated elucidation of the fundamental 

logic of single-neuron information processing.

However, for systems like the intact vertebrate brain (composed of 107—1011 interconnected 

neurons and characterized by crucial emergent properties), studying constituent components 

in isolation can provide little insight into many of the most significant mysteries. 

Alternatively, converting the brain—or more broadly the entire metazoan (multicellular 

animal) organism—into an assembly of reactants anchored onto a new and versatile three-

dimensional (3D) coordinate system has recently emerged as a complementary strategy (23, 

24). Coupling individual subsets of chemically defined biomolecules to functional groups, 

covalently anchoring or entangling these in turn within a polymer lattice, and then working 

with this structure (effectively a 3D assembly of spatially tagged molecular reactants) (23, 

24) has already opened the door to a diverse array of novel approaches and discoveries in 

biology.

The technique builds in part from (among several other foundations in science and 

engineering) the chemistry of hydrogels, which are 3D polymeric networks of connected 

hydrophilic components. Gels and polymers have a long history of use in biology, including 

for providing physical support of tissues during sectioning and imaging, as well as for a 

number of important clinical applications in regenerative medicine and tissue engineering. 

But in the basic science of hydrogel-tissue chemistry (23, 24), specific classes of native 

biomolecules in tissue are immobilized or covalently anchored (for example, through 

individualized interface molecules to gel monomer molecules) and precisely timed 

polymerization causing tissue-gel hybrid formation is triggered within all the cells across the 

tissue in an ordered and controlled process (Figure 1) to ultimately create an optically and 

chemically accessible biomolecular matrix. Indeed, when the biomolecules of interest are 

thereby transferred to the polymer lattice, a robust new composite hydrogel-tissue material 

results (23, 24), which becomes the substrate for future chemical and optical interrogation 

that can be probed and manipulated in new ways. This approach has been diversified (Figure 

2) to address needs and opportunities in organisms and tissues across biology (including in 

cancer diagnostics, bacterial and HIV infection of mammalian tissues, developmental 

biology, parkinsonism, Alzheimer’s disease, multiple sclerosis, autism, drug abuse, and fear/

anxiety disorders). Here, we review the fundamentals of this approach, the rapidly 

expanding scope of discoveries that have resulted, and emerging directions and opportunities 

for the future.

DEVELOPMENT OF METHODS

Biomolecule functionalization and multistep linkage to a versatile tissue-hydrogel scaffold 

(Figure 2) within the cells of vertebrates (mouse, fish, and human) (15, 16, 23) were 

described in an initial version called CLARITY; this method was optimized for application 

to the vertebrate nervous system (15, 16, 23). The hydrogel-tissue hybrid brains were 
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transparent (i.e., clarified) and thus permissive of intact whole-organ imaging at high 

resolution (16). It was noted that the resulting hydrogel-tissue hybrid “expanded” upon lipid 

removal in aqueous solution but “did not cause net tissue deformation…[R]emaining 

secured in place were fine structural details” (16, p. 334) since the expansion could be 

reversed with a solution change. Other diverse strategies for reducing opacity of intact tissue 

had been explored for years (though with varying degrees of efficacy and versatility) (Figure 

3), but transparency was not the only experimental leverage achieved with the hydrogel-

tissue chemistry (HTC) approach; for example, the new hybrids were designed to be 

macromolecule permeant—enabling multiple rounds of molecular interrogation of preserved 

biomolecules (proteins and nucleic acids) that had been anchored into the new physical 

structure (16, 23, 125).

Single-photon confocal microscopy was initially used to image many-millimeter-thick 

blocks of the resulting clarified and fluorescently labeled human brain tissue, zebrafish 

central nervous systems, and whole adult mouse brain hemispheres (16). Diverse lines of 

work eventually emerged from this publication (23); as was noted therein, “infused elements 

need not be exclusively hydrogel monomers or acrylamide-based, and the properties of 

infused elements may be adjusted for varying degrees of clarity, rigidity, macromolecule-

permeability or other functionality” (16, pp. 336–37). Also in 2013, a broad diversity of 

additional compositions, including those with acrylates or alginates, was described (25), and 

indeed variations and innovations on the theme rapidly emerged (Figure 4) (reviewed in 23, 

53).

Also introduced was an electrophoretic tissue clearing (ETC) technique to accelerate lipid 

removal (16); lipid removal promotes tissue transparency and macromolecular interrogation, 

and this process can be carried out nondestructively after hydrogel-tissue hybrid formation 

(Figure 1). ETC employs electric field-forced clearance of lipid-containing ionic-detergent 

sodium dodecyl sulfate (SDS) micelles (Figure 1). Although helpful, ETC is not absolutely 

necessary to remove lipids, and the following year an ETC-independent approach was 

reported—passive CLARITY. This variant was initially described by Zhang et al. (147) and 

was found to be effective for adult central nervous systems and spinal cords. Passive 

CLARITY was soon thereafter reported to apply also to brain slices (104), and when 

combined with CLARITY-optimized light-sheet microscopy (COLM) this variant enabled 

imaging of entire adult mouse brains at subcellular resolution within several hours (131). At 

the same time, another CLARITY variant (PACT) was described (142), presenting 

modifications to the CLARITY reagents to passively achieve fast clearing of thick samples. 

After overnight tissue fixation in 4% paraformaldehyde (PFA), tissues were embedded in a 

4% acrylamide hydrogel solution without the 4% PFA and 0.05% bisacrylamide of the 

original hydrogel formulation to minimize cross-linking (133, 142). In addition, a relatively 

inexpensive refractive index-matching solution, termed RIMS, was introduced (142).

The data of both Yang et al. (142) and Tomer et al. (131) in 2014 showed a moderate degree 

of tissue expansion associated with the HTC process, as had been described by Chung et al. 

(16) and indeed also as had been seen with earlier tissue clearing approaches (Figure 5). 

Although this effect had not been amplified to explore potential advantages, over the next 

two years, several HTC papers {11 [expansion microscopy (ExM) in 2015], 131 [expansion 
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passive CLARITY technique (ePACT) in 2015], and 62 [magnified analysis of the proteome 

(MAP) in 2016]} soon enabled much-enhanced swelling of HTC hybrids to improve 

resolution of densely packed features. In a method unique for preserving endogenous 

fluorescence, ePACT (133) uses collagenase to enhance the magnitude of the size change. 

Two of the other versions, ExM (11, 30) and MAP (64), also embed tissue in a similar 

hydrogel network (reviewed in 53). In these formulations, which prescribe inclusion of 

acrylates (R2 in Figure 2) alongside acrylamide to enhance swelling (Figures 2 and 4), 

proteolysis can be carried out to facilitate this process but is not required. MAP additionally 

allows reversible expansion of the tissue-hydrogel hybrid (Figure 5) and super-resolution 

imaging of subcellular structures using high concentrations of acrylamide (30% acrylamide 

with 10% acrylate) to promote protein attachment to the hydrogel and prevent intra- and 

inter-protein cross-linking (64).

A large number of subsequent HTC studies put forward additional enhancements, including 

modifications of the ETC process and device (5, 59, 71, 72, 117, 121), of the hydrogel 

monomer and cross-linker levels (5, 32, 63, 131, 133, 142) and of other parameters while 

maintaining the basic hydrogel-tissue chemistry (18, 20, 22, 32, 63, 80, 84, 108, 122, 140, 

142, 143, 145, 149). In addition to the acrylamide and/or acrylate-based PFA-coupled 

hydrogels noted above (PACT/ePACT, ExM, MAP), other gelation mechanisms have also 

been described. The SWITCH approach uses pH changes to synchronize formation of a 

glutaraldehyde-crosslinked matrix within tissue before CLARITY-type lipid removal via 

SDS, resulting in a heat- and chemical-resistant tissue-hydrogel hybrid that facilitates 

multiple rounds of labeling, elution, and relabeling (94, 106). Also described in the study 

that introduced PACT was a strategy termed PARS (perfusion-assisted agent release in situ) 

for whole-body clearing and labeling using perfusion through the vasculature to deliver 

hydrogel, clearing, labeling, and imaging reagents (133, 142). PACT and other passive 

CLARITY-based HTC methods were further adapted to tissues otherwise difficult or 

impossible to image intact, from the rigid and opaque bone [PACT-deCAL (133, 140) and 

Bone CLARITY (44)] to the soft and friable clinical samples and embryos (27, 51, 148).

In addition to small-molecule dyes, cellular stains, and protein labels (e.g., lectin) that can 

directly target proteins, DNA, and other biomolecules, tissues cleared using HTC can be 

stained using fluorescently tagged whole antibodies as well as smaller antibody formulations 

such as FAB (fragment antigen-binding antibody) fragments (15, 16, 131, 133). Nanobodies 

were effective in staining PACT-cleared tissues (142); at 10% the size of full antibodies and 

stable over a variety of pH and temperature conditions, nanobodies are particularly 

appealing for labeling cleared thick tissues (133). The ETC process was accelerated using an 

approach called stochastic electrotransport (59), and an electrophoretically driven approach 

transported antibodies across a few millimeters of cleared tissue in less than an hour, 

approximately 800 times faster than via passive diffusion (75). PRESTO (pressure-related 

efficient and stable transfer of macromolecules into organs) conferred increased antibody 

penetration depth and speed, particularly in cleared peripheral organs, by application of 

either centrifugal force or convection flow using a syringe pump during sample incubation in 

an antibody solution (71).
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To broaden the types of macromolecular information obtained, recent studies have 

developed methods for visualizing lipids and RNA in HTC samples. Following earlier work 

that demonstrated the detection of endogenous mRNA in CLARITY specimens via standard 

in situ hybridization protocols (16), Yang et al. (142) showed that PACT hydrogels 

supported the use of single-molecule fluorescence in situ hybridization (smFISH) to detect 

individual mRNA transcripts at depth. In optimizing retention of RNA for labeling in cleared 

hydrogel-tissue hybrids, a carbodiimide compound [1-ethyl-3–3-dimethyl-aminopropyl 

carbodiimide (EDC)] was discovered to be useful for specifically linking RNA nucleotides 

directly to the tissue hydrogel (125) (Figure 2), and application of the hairpin chain reaction 

(HCR) amplification system facilitated multiplexed RNA labeling in these EDC-CLARITY 

samples that could be at least 3 mm thick. A 1% acrylamide hydrogel exhibited improved 

RNA labeling (for both total RNA and specifically mRNA) when compared to CLARITY 

samples (with 4% acrylamide) (125). Multiplexed single-molecule HCR was also 

demonstrated as an effective in situ hybridization technique in HTC brain slices embedded 

and cleared with PACT or ExM (12, 27, 115). Other methods led to improved visualization 

of fluorescent nanoparticles (polyethylene glycol-coated quantum dots) (116, 117), creation 

of nonfluorescent (dark) reaction products (horseradish peroxidase colorimetric labeling) 

(122), and development of lipophilic dyes that were altered to be aldehyde fixable to 

proteins to mark membranes even after HTC lipid removal (52).

HYDROGEL-TISSUE CHEMISTRY-BASED DISCOVERY IN NEUROSCIENCE 

AND THROUGHOUT THE ORGANISM

HTC methods have proven powerful for neuroscience; only a few examples of resulting 

discoveries are collected here to illustrate current capabilities and opportunities. First, a large 

number of studies have used the HTC approach to identify local and global wiring patterns 

of targeted neurons, beginning with the demonstration that a specific class of spinal cord 

neuron (NECAB expressing) exhibits midline crossing (147), and subsequently with the 

mapping of infection distribution for viral vectors microinjected into the lateral amygdala 

(LA) to analyze the neural mechanism of cocaine-cue memory engram formation in mice 

(50). Similarly, in a study analyzing the morphology of raphe-spinal fibers in the spinal cord, 

passive CLARITY provided visualization of a unique branching pattern of serotonergic 

fibers along the rostrocaudal axis as they extended toward the lateral motor neuron column 

(77, 78). Using rabies virus-based circuit mapping, passive CLARITY and COLM provided 

unbiased global mapping of all the neurons in the brain that project to dopamine neurons in 

the substantia nigra pars compacta, which in turn project to dorsolateral versus dorsomedial 

striatum (73). Likewise, rabies virus-based methods were used to trace monosynaptic inputs 

to projection-defined dopamine neurons via whole-brain CLARITY (in this case also with 

ETC and light-sheet imaging) (90). Anterograde tracing followed by CLARITY (using both 

ETC and passive clearing) provided visualization of synaptic targets of GABAergic 

projections from the medial septum (136). And in a study analyzing top-down control of 

anxiety and fear, passive CLARITY was used to track and map a distinct novel projection 

from ventromedial prefrontal cortex to basomedial amygdala (1). Integrating passive 

CLARITY with light-sheet microscopy and behavior, researchers implemented multiple-
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animal whole-brain activity mapping protocols for HTC alongside a strategy termed 

CAPTURE (143) for quantifying numbers and projections of behaviorally activated neurons.

PACT was used to study the distribution and morphology of astroglia in thick tissue sections 

(92) and the 3D distribution of multiple genetically defined neuron types in mouse brains 

(103). Passive CLARITY on sections of medial prefrontal cortex (mPFC) established the 

presence of nonoverlapping corticotropin-releasing factor and corticotropin-releasing factor 

receptor-1 circuits relevant to acute stress (138) and was used to map brain-wide viral 

expression in mice inoculated with western equine encephalitis virus in the foot pad (101). 

The distribution of microglia within the subventricular zone (a neurogenic region of the 

adult central nervous system) was mapped using passive CLARITY (38), and in the 

periventricular zone of the cerebellum, passive CLARITY was employed to analyze the 

organization of astrocytes during development (43). Passive CLARITY was used to show 

increased dendritic complexity in hippocampal pyramidal neurons of transgenic mice that 

exhibit enhanced learning (114) and to observe the localization of cells expressing 

neuromedin B, a bombesin-like neuropeptide that influences sighing behavior, around the 

facial nucleus, including the retrotrapezoid nucleus (a control center for breathing) (76). In 

transgenic mice using the nicotinic acetylcholine receptor α2 subunit (Chrna2) locus to mark 

deep-layer V Martinotti cells, passive CLARITY was used to verify labeling, specificity, and 

morphology of the targeted cells (47). For examining somatostatin-expressing interneurons 

in the dentate gyrus, CLARITY allowed demonstration of the axonal projections of a 

specific subset to the medial septum (146). Subcellular localization of a specific 

transcription factor, ESRRA, was analyzed using CLARITY (1% acrylamide with ETC) in 

brain sections (200 μm) to help elucidate the protein’s role in cell signaling (111). Using 

viral vector tracing to label mPFC-projecting neurons in the basolateral amygdala (BLA), 

CLARITY provided visualization of the target specificity of those neurons, which aided in 

investigation of their role in manipulating fear associations (60). To analyze neuronal 

organization in the hypothalamus, whole-brain mapping of tyrosine hydroxylase (TH)-

positive neurons and projections was performed with CLARITY followed by 

immunostaining and COLM (109).

In addition to enabling these basic discoveries, HTC work has also stimulated technical and 

engineering advances. Passive CLARITY of electrolytically lesioned slices was used to 

correct electrode placement for fast-scan cyclic voltammetry (120) and to identify locations 

of implanted optical fibers (89). Following penetrating brain injury, passive CLARITY 

permitted brain-wide visualization of specific peptide accumulation in studies exploring 

targeted delivery of diagnostic and therapeutic compounds (86). And more broadly, body-

wide biodistribution studies looking at chemicals or biologicals were found to benefit from 

HTC; for example, Treweek and coworkers (134) and Deverman et al. (28) demonstrated 

that whole-body PARS (142) could facilitate the generation of transduction maps of 

systemically delivered genes by adeno-associated viruses, which in turn facilitated 

characterization and discovery of new viral variants for targeting the central and peripheral 

nervous systems (8). HTC-based clearing has also technically enabled quadruple 

immunofluorescent staining as well as multiple rounds of labeling to reveal a variety of 

richly defined subcellular domains and molecule types in single human cerebellar sections 

(102).
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Several studies have combined magnetic resonance imaging (MRI) with CLARITY. In 

probing the contribution of myelination to measurables from diffusion tensor imaging, 

passive CLARITY revealed that myelination correlates strongly with fractional anisotropy 

but only partially with radial diffusivity (9). The differential contributions of lipids and 

proteins to MRI contrast were analyzed using passive CLARITY to remove lipids and 

preserve proteins: Cleared tissues showed minimal contrast, increased relaxation times, and 

diffusion rates similar to free water, and lipids were thus demonstrated to be the dominant 

source of MRI contrast in brain tissue (74). In experimental autoimmune encephalomyelitis 

(a mouse model of multiple sclerosis), a direct relationship was defined between gray matter 

atrophy visualized using MRI and the number of axonal end bulbs in spinal cord visualized 

using passive CLARITY (118). This type of ground-truth work on clinical biomarkers is of 

immense and rapidly increasing value, particularly given the epidemiology of 

neurodegenerative diseases.

Disease model work in general has progressed rapidly with HTC. In a mouse model for 

Parkinson’s disease, passive CLARITY revealed fragmented nigrostriatal axons (97). In 

addition to related studies in rat models (80, 119), direct human-disease HTC applications 

have also advanced rapidly. The effectiveness of CLARITY on postmortem human brain 

tissue was demonstrated using 500-μm thick tissue blocks from clinical autism samples that 

had been stored in formalin for over six years, revealing 3D morphologies not readily 

accessible using traditional sectioning (16). Similarly, passive CLARITY has been used to 

examine the 3D architecture of amyloid and tau aggregates in 500-μm thick banked tissue 

from Alzheimer’s disease patients (3), and passive CLARITY has been used on 3-mm thick 

blocks of fresh or formalin-fixed tissue from Parkinson’s disease patients to reveal Lewy 

body inclusions nearly 1 mm deep in the tissue (80).

NONNEURAL TISSUES

Although originally conceived for studying the brain (23, 24), the HTC approach can be 

extended to a wide variety of other organs and tissue types, including spinal cord, lung, 

heart, intestine, spleen, kidney, muscle, testis, pancreas, liver, skin, and bone (32, 44, 71, 72, 

100, 140, 142). Its usefulness for imaging infection was demonstrated using PACT in mice 

infected with fluorescent Mycobacterium tuberculosis, which enabled visualization of 3D 

spatial distribution of bacteria throughout intact lungs (20). A modified PACT, MiPACT (for 

microbial identification after PACT) was designed to label bacterial rRNA (via HCR) for 

analysis of spatial organization and metabolic activity of bacteria in amorphous sputum 

samples from cystic fibrosis patients (27). Also in lung, localization of nestin-expressing 

cells was observed throughout the vasculature (not the airway system) of tissue cleared via 

PACT, which motivated and guided investigation of the role of these cells in development of 

pulmonary hypertension (110). In a mouse model of lung adenocarcinoma, applying 

CLARITY to whole-lung tumors (clearing with two days of ETC) provided a comprehensive 

demonstration of significant differences in the cellular density and morphology of tumor 

cells with and without depletion of regulatory T cells (54). In pancreatic tissue, an evaluation 

of p53 loss of heterozygosity in tumor progression was enabled by HTC (95).
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In liver, 3D positioning within the portal system (relative to the canals of Hering) was 

demonstrated using passive CLARITY for periportal hepatocytes, which undergo 

proliferation following injury (37). After application of passive CLARITY to rat kidneys, 

superresolution-STED microscopy revealed 3D positioning information at the nanometer 

scale (137). HTC on mouse and human gut tissue was achieved using passive CLARITY and 

immunostaining to visualize structures in the enteric nervous system, vasculature, smooth 

muscle layers, and epithelium, while also demonstrating compatibility with classical 

pathological stains such as hematoxylin-eosin and Heidenhain’s Azan (96). Early systemic 

viral spread of human immunodeficiency virus 1 (HIV-1) in humanized mice was analyzed 

from gut-associated lymphoid tissues using PACT (58), and HTC (with ETC) was found 

useful for studying even dense and fibrous mouse hind-limb skeletal muscle tissue (91). In 

virgin and lactating mouse mammary glands, epithelial and tumor cells were made visible 

using PACT (82), whereas with passive CLARITY on intact mouse ovaries, the architecture 

and growth of ovarian follicles and their relationship to vasculature was analyzed throughout 

the mouse reproductive life (35, 83). Embryonic and neoplastic tissue analysis has been 

similarly optimized (48, 88, 132), and fast clearing was achieved by HTC in liver tissue (69) 

as well as in the growth plates of distal limbs (17).

In hatched chickens, adult Xenopus, and adult zebrafish, the comparative organization of 

HTC-stabilized cerebrospinal fluid-contacting cells revealed similarities pointing to a 

common bony vertebrate ancestor (141). Legs from chicken embryos were analyzed using 

passive CLARITY to reveal embryonic development of hallux positioning in the avian 

grasping foot (6). Passive CLARITY was also applied to the mouse nasal septum to 

visualize the morphology of horizontal basal cells in the olfactory epithelium following 

lesion of the olfactory bulb (112). The effect of subcutaneous injection of poly(methacrylic 

acid-co-methyl methacrylate) beads on vascularization was observed using passive 

CLARITY in mouse skin tissue (79). A dual-illumination-side light-sheet microscope 

optimized for imaging cardiac tissue over 1 cm3 in volume, combined with HTC, enabled 

researchers to measure ventricular dimensions, track the lineage of cardiac cells, and view 

the spatial distribution of cardiac-specific proteins within intact hearts (29). CLARITY also 

has been employed in intact mouse hearts as well as human heart tissue up to several 

millimeters thick (42, 62).

Host-pathogen interactions were studied using passive CLARITY and PACT to 

comprehensively examine morphology of necrotic granulomas from adult zebrafish infected 

with Mycobacterium marinum (19, 20). PACT and CUBIC (123) were found well suited for 

imaging the intact zebrafish testis at cellular resolution (39). Passive CLARITY was applied 

to transgenic Xenopus tadpoles to locate and quantify thyroid hormone signaling disruption 

by contaminants introduced during brain development (36). Applying passive CLARITY to 

the intact liver of lamprey undergoing metamorphosis provided visualization of the process 

of biliary degeneration, a process that occurs in human infants with biliary atresia via a 

mechanism that is still unknown (14), and passive CLARITY/COLM imaging in the 

lamprey was used to visualize the spatial organization of neuronal inputs and outputs in the 

optic tectum with the Neurobiotin tracer (55).
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Addressing challenges beyond soft tissue, Bone CLARITY (44) was developed and applied 

along with a CLARITY-optimized light-sheet microscope to quantify marrow cells from 

cleared adult intact mouse bones, revealing differences in fluorescent stem cell count and 

distribution after bone-forming agent administration (44). HTC approaches have been 

applied to multicellular plants as well via plant-enzyme-assisted (PEA)-CLARITY, an 

adaptation to perform optical clearing and antibody interrogation on plant tissues. Using cell 

wall-degrading enzymes to increase permeability and starch-hydrolyzing enzymes to 

improve transparency following passive clearing, PEA-CLARITY enabled visualization of 

fluorescent signals from expressed proteins as well as antibody staining in whole, intact 

tobacco and Arabidopsis leaves (98). The PEA-CLARITY protocol was later applied to 

study the 3D architecture of the Medicago truncatula root nodules (128).

OUTLOOK

The proven application domain of HTC in biology and medicine is rapidly expanding and 

has already resulted in numerous basic science discoveries and opportunities for clinical 

medicine (e.g., 24, 51, 143). However, the novelty of the preparation and its resulting data 

streams have created challenges. Here, we consider the current rate-limiting steps as well as 

opportunities for the future.

Early on, one of the clearest applications of the HTC approach was enabling high-resolution 

optical access to large intact tissues, organs, and organisms. Although this major goal was 

achieved, collecting high-resolution volumetric image data from large samples created new 

issues. For example, the transparency of the hydrogel-tissue hybrid allowed confocal or two-

photon imaging over large volumes, but these slow point-scanning techniques led to 

bottlenecks in image acquisition (e.g., the collection of high-resolution structural data sets 

for an adult mouse brain required several days of imaging). Data collection on this timescale 

is associated with problems ranging from photobleaching to simple microscope 

overoccupancy, but rapid development of advanced light-sheet imaging, which offers orders-

of-magnitude improvement in speed (29, 41, 44, 107, 115, 130, 131, 143), addressed this 

acquisition problem. Subsequent HTC-focused work included stochastic electrotransport 

(59); super-resolution-STED microscopy (137); adaptive optics (105); HTC sample handling 

chambers (44, 92, 93, 135); custom ETC and staining chambers (59, 71); and microfluidic 

chip-based embedding, clearing, and labeling (13).

The initial expansion found associated with HTC methods (16, 131, 142) was counteracted 

with size-normalization/contraction strategies during the refractive index-matching step to 

allow high-resolution objectives with limited working distance to access more of the brain 

(16). This strategy also had the effect of reducing the data set size, an important 

consideration for tractability. However, these considerations have become progressively less 

important with the advent of new hardware, including customized long-working-distance 

and high-resolution CLARITY objectives (87, 131) as well as distributed computing 

strategies.

Many studies have employed automated analysis pipelines for manipulating large CLARITY 

data sets; commercial 3D rendering software programs, such as Imaris or Arivis, can 
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automate manually intensive data processing steps such as cell counting. Automation 

becomes even more valuable when analyzing thicker tissue sections or whole organs (44, 92, 

143), but the utility of automated analysis extends beyond the domain of cell body 

recognition and counting. To quantify neural projection patterns, an automated method has 

been developed to compute 3D structure tensors from CLARITY images, and input of the 

tensors into diffusion tractography software yielded reconstruction of calculated streamlines 

mapped onto fibers from the CLARITY images (143). With this approach, connectivity 

between a seed region and specific downstream targets could be visualized and 

quantitatively evaluated by counting streamlines (143). In addition, alignment of 

autofluorescence images from multiple sample organs can be used to create a common 

reference space. When autofluorescence is combined with segmentation algorithms for 

automated cell detection, a transformation of the acquired signal from each sample onto this 

reference space can be used to compare the regional distribution of labeled cells across brain 

samples and allow registration to public atlases, such as the Allen Brain Institute’s Mouse 

Reference Atlas (90, 107, 143). Automatic annotation of CLARITY brain images (67) has 

been enabled by registering CLARITY brain images to the Allen atlas using a method called 

Mask-LDDMM. TeraFly is a free, open-source software tool designed specifically for 3D 

integrated visualization and annotation of massive, terabyte-sized image data sets like those 

acquired using the COLM system (7), and a manual segmentation tool (ManSegTool) for 

segmenting 3D neuronal data sets was demonstrated to enable neuroscientists to extract 

neurons from cerebellum slices cleared and imaged using passive CLARITY (85). For 

automatic annotation and standardization of brainwide data sets, WholeBrain is a free, open-

source software that provides connectivity and activity-based mapping and quantification of 

multidimensional data, using a scale-invariant anatomical mouse brain atlas, which allows 

comparison of results across experiments and imaging platforms (40). Concurrently, an 

interactive Web-based framework, Openbrainmap (http://openbrainmap.org), was developed 

for data visualization and sharing between laboratories (40).

Tissue clarification is only one of many application domains of HTC methods, although it is 

arguably the most developed. Beyond tissue transparency, two studies have applied the 

hydrogel tissue-embedding step of CLARITY to stabilize mouse embryos or adult mouse 

brain tissue for micro-computed tomography (micro-CT) imaging using contrast agents that 

typically shrink tissue (2, 139). CLARITY was also used to reveal the 3D structure of 

patterned microtissues (129). And in stem cell-derived organoids, passive CLARITY 

followed by immunostaining was used to model and explore effects of cocaine exposure on 

the human fetal brain (70).

A final emerging domain of substantial interest, and an initial motivation for HTC (26), is 

the development of hydrogel-tissue hybrids with diverse types of functionalization, which 

would enable experiments extending far beyond static structural and molecular analysis. For 

example, creation of active constructs based on polymers with electrically conductive 

properties could allow new forms of interrogation of biological systems, and diverse 

additional forms of HTC and variants are in the process of emerging. Rooted in fundamental 

chemistry, the broad concept of envisioning (and remaking) metazoan animals and tissues as 

metareactants—that is, positionally intact and chemically versatile scaffolds of molecular 
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reactants—may continue to open up new and unanticipated domains of investigation and 

discovery across diverse fields of biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hydrogel-tissue chemistry (HTC) steps toward tissue functionalization. The example shown 

(initial HTC formulation) is termed CLARITY (16). The main steps for transformation of 

the tissue, as shown for (a) the diagrammed cell prior to the HTC process, include (b) 

hydrogel-monomer infusion followed by cross-linking to native macromolecules and then 

gelation (dashed black lines denote newly formed C-C bonds to the hydrogel lattice, which 

in turn is shown as wavy green lines). Details of the chemistry are shown in Figure 2. For all 

figures, the color code for tracking source of C and N atoms is as follows: blue 

N(H)=protein-derived amine moiety; magenta C(H)=formaldehyde-derived carbon moiety; 

red N(H)=nucleic acid-derived amine moiety; and dark green=amide of exogenous gel 
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monomer (e.g., acrylamide). (c) The delipidation process is shown after the anchoring of 

proteins directly to the new hydrogel lattice; nucleic acid anchoring is chiefly indirect via 

protein bridges, anchoring via EDC (1-ethyl-3–3-dimethyl-aminopropyl carbodiimide) for 

linking the 5-phosphate group to surrounding amines (125) (Figure 2), or polymer 

entanglement. Stringent delipidation with detergent can then proceed without the risk of 

extensive biomolecule loss or structural disruption. (d) Optical clearing, refractive index 

matching, and high-resolution volumetric imaging (through delipidized tissue) can now 

occur for reading out molecules replotted onto the new tissue-hydrogel coordinate system 

shown in green (23).
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Figure 2. 
Example functionalization chemistry. Most current hydrogel-tissue chemistry (HTC) 

protocols include a preliminary biomolecule fixation step, such as aldehyde-based cross-

linking of (a) proteins, peptides, and small-molecule amines and/or (b) nucleic acids, 

including targeted coupling of nucleic acids to the matrix via EDC (16, 125). (c) Biological 

macromolecule retention is next enhanced via creation and conjugation to (for example) an 

acrylamide-bisacrylamide gel matrix. Note that direct aromatic amine coupling of the RNA 

with aldehyde shown is expected to be a minor reaction compared to coupling reactions with 

Gradinaru et al. Page 21

Annu Rev Biophys. Author manuscript; available in PMC 2019 February 02.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



protein aminomethylol moieties and compared to noncovalent caging of extensively 

crosslinked and protein-bound RNA in the hydrogel matrix. Depicted here are certain 

reactions as designed, but as Feldman pointed out 45 years ago, “The use of nucleic acid 

reactions with formaldehyde has outstripped our knowledge of their mode of action” (34, p. 

2), and the same could be said of many modern tissue-based chemistries. A fundamental 

theme, however, is a gel monomer (green box, in this case showing three well-defined 

demonstrated R-moiety variants with the R1 acrylamide common to many current 

formulations) and the resulting tissue-hydrogel scaffold (here peach box, showing a 

representative HTC structure) into which the biological system is transformed; this provides 

the new coordinate system for replotting and jointly working with functionalized 

biomolecules stably in 3D space. Abbreviations: EDC, 1-ethyl-3–3-dimethyl-aminopropyl 

carbodiimide; INIT, free radical initiator.
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Figure 3. 
Non-hydrogel approaches for optical access to tissue. Beyond the hydrogel-tissue chemistry 

(HTC) concept, distinct transparency methods have been reported on the basis of various 

combinations of organic solvent-based dehydration and delipidation, or of hyperhydration-

based optical clearing after less stringent permeabilization and delipidation steps. Unlike 

HTC constructs, these are all generally limited to optical imaging as the next and final step, 

rather than specifically enabling additional chemistry. The color code for tracking source of 

C and N atoms is as follows: blue N(H)=protein-derived amine moiety, magenta 

C(H)=formaldehyde-derived carbon moiety, red N(H)=nucleic acid-derived amine moiety. 

(a) Organic solvent-based clearing (dehydration, lipid removal, and refractive index 

matching) methods include BABB/ultramicroscopy (31), 3DISCO (33), iDISCO (107), 

FluoClearBABB (113), uDISCO (99), RetroDISCO (150), CRISTAL (57), and ethanol/ethyl 

cinnamate (61). (b) Aqueous-based clearing (refractive index matching, with optional 

hyperhydration and lipid removal) methods include: Scale and ScaleS (45, 46), SeeDB (56), 

CUBIC (65, 77, 123, 124, 126), 2,2′-thiodiethanol (TDE) (4, 18), FRUIT (49), ClearSee 

(66), acrylamide-free CLARITY (68, 81), sorbitol/sucrose/ fructose (144), and single-cell 

optical clearing (21). Abbreviations: 3DISCO, 3-dimensional imaging of solvent-cleared 

organs; BABB, benzylalcohol/benzyl benzoate; CRISTAL, curing resin-infiltrated sample 

for transparent analysis with light; CUBIC, clear, unobstructed brain imaging cocktails and 

computational analysis; DMSO, dimethylsulfoxide; iDISCO, immunolabeling-enabled 3-

DISCO; SeeDB, See Deep Brain; uDISCO, ultimate DISCO.
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Figure 4. 
Hydrogel-tissue hybrid backbone concepts. Hydrogel-tissue chemistry (HTC) structures 

involve integration of native biomolecules as part of the hydrogel framework as shown in 

Figures 1 and 2; for clarity on HTC subtypes, shown here are only the designs for exogenous 

chemical-derived backbones, while a fuller perspective with details on integration of native 

biomolecules appears as Supplemental Figure 1. HTC backbone formulations (a selected 

subset shown) allow customizable biological macromolecule anchoring and 

functionalization within a variety of frameworks. Molecular design of the initial backbone 

(top left; 16) and some of the subsequent early variants (top middle, top right, bottom right) 
are shown; color-coded backbone constituents are shown at lower left, and symbols for 

design properties of different methods are shown at bottom middle. The chemical backbone 

of the hydrogel built within the cells (top left) interacts with tissue elements through two 

principal routes: (i) covalent integration of amine-containing and otherwise functionalized 

proteins, nucleic acids, and small biomolecules; and (ii) noncovalent trapping of bulky 

moieties, such as extensively cross-linked protein networks within the hydrogel matrix. As 

with the initial HTC design, subsequent HTC variants are similarly capable of preserving 

molecular information during tissue processing through physically securing tissue 

macromolecules within the hydrogel or through recording their cellular location using 

custom labels that can withstand processing steps. Among the notable formulations, ExM 

(11), ePACT (133), and MAP (64) incorporate acrylate alongside acrylamide (as R2 of the 

R1, R2, and R3 moieties shown in Figure 2) into the basic HTC formulation to further 
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enhance expansion. Bisacrylamide was not described in the initial PACT paper but can be 

included in the PACT formulation. SWITCH (94) gelation forgoes paraformaldehyde/

acrylamide in favor of glutaraldehyde, a dialdehyde fixative that confers more robust protein 

cross-linking and some fixation of amine-containing phospholipids. EDC-CLARITY (125) 

provides a dedicated covalent-linkage pathway for more robust mRNA cross-linking to the 

tissue-hydrogel matrix. Other properties of interest seen with different variants include 

increased rigidity (seen with SWITCH) or conversely increased size-flexibility [as seen with 

PACT (142), ExM (11), ePACT (133), and with other methods not shown, including proExM 

(127), ExFISH (12), iExM (10), and MAP (64); Supplemental Figure 1]. Tissue components 

are critical constituents of the HTC backbone, as shown in more detail in Supplemental 

Figure 1; for example, in the top-row HTC methods, native proteins (with multiple reactive 

amines) can support cross-linking as well as bisacrylamide (R3 moiety of Figure 2) does. 

Moreover, native amines play a crucial role in catalyzing glutaraldehyde polymerization in 

the bottom right SWITCH method, in which low pH is used to initially slow down 

polymerization as glutaraldehyde is exposed to tissue amines until gel formation is desired. 

Abbreviations: EDC, 1-ethyl-3–3-dimethyl-aminopropyl carbodiimide; ePACT, expansion 

passive CLARITY technique; ExFISH, expansion fluorescent in situ hybridization; ExM, 

expansion microscopy; iExM, iterative expansion microscopy; MAP, magnified analysis of 

the proteome; PACT, passive CLARITY technique; proExM, protein-retention expansion 

microscopy; SWITCH, system-wide control of interaction time and kinetics of chemicals.

Gradinaru et al. Page 25

Annu Rev Biophys. Author manuscript; available in PMC 2019 February 02.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 5. 
Examples of topology-preserving size changes. Size-adjustable tissue matrices can facilitate 

visualization of tissue architecture at the cellular or molecular level. The degree of intrinsic 

tissue-hydrogel expansion may be enhanced via the inclusion of yet more absorbent 

hydrogel monomers in the hydrogel-tissue chemistry (HTC) gel formulation. Expansion was 

seen with (a) the non-HTC method Scale in 2011 (46), (b) two HTC-based passive 

CLARITY techniques that preserve endogenous fluorescence during expansion: PACT in 

2014 (142) and expansion-PACT (ePACT) in 2015 (133), and several additional HTC 

methods: (c) passive-CLARITY in 2014 (131), (d) expansion microscopy (ExM) in 2015 

(11), and (e) magnified analysis of the proteome (MAP) in 2016 (64). By contrast, (f) the 

non-HTC organic solvent-based method uDISCO shrinks tissue (99). In (b) PACT/ePACT, 

mild enzymatic digestion followed by delipidation and hydration of the tissue-hydrogel 

matrix allows fourfold expansion with the preservation of biomolecular content and native 

fluorescence via expansion inversely proportional to the degree of hydrogel cross-linking; 

matrices of 2% acrylamide and no paraformaldehyde (A2P0) exhibited greatest expansion 

over delipidation (133). HTC methods have progressively achieved greater expansion of the 

tissue-hydrogel matrix [magnified analysis of the proteome (MAP): 5-fold expansion; 

iterative expansion microscopy (iExM): 20-fold expansion] via modified HTC, stringent 

temperature degradation of the tissue matrix, and/or alternate enzymatic digestion steps. 

However, increased hydrogel-tissue hybrid expansion for visualization tends to come at the 

cost of lost biomolecular content and reduced capability for ongoing functionalization, as 

well as reduced practicality for large-volume imaging. Images adapted as follows: (a) figure 

1 of fiama et al. (46); (b) figure 1 of Yang et al. (142), supplemental figure 4 of Treweek et 

al. (133) and figure 2 of Treweek & Gradinaru (134); (c) supplemental figure 1 of Tomer et 

al. (131); (d) figure 3 of Chen et al. (11); (e) figure 1 of Ku et al. (64); (f) figure 1 of Pan et 

al. (99). Additional abbreviation: eYFP, enhanced yellow fluorescent protein.
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